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Abstract

It is shown that in fairly general circumstances the event and observable frameworks for
axiomatic quantum mechanics are equivalent.

Introduction

In the quantum logic approach to axiomatic quantum mechanics (Birkhoff
and von Neumann, 1936; Mackey, 1963) the basic mathematical structure is
the partially ordered set of events, which are usually required to form a
o-orthomodular poset (Mackey, 1963; Piron, 1963; Jauch, 1968; Pool, 1968).
In this framework a set of events is said to be compatible (or simultaneously
measurable) if it is contained in a Boolean sub-g-algebra of the poset; thus it
is natural to think of such subalgebras as the mathematical objects corres-
ponding to measurements.

In this paper we generalize this context by studying what we call a system
of measurements: a collection of Boolean ¢-algebras that overlap in such a
way that operations (complements, countable joins) are consistently defined
on the intersections, We characterize those systems of measurements that
arise from quantum logics (our terminology for o-orthomodular posets).
Related results appear in Finch (1969) and Maczynski, (1970).

An alternative approach to axiomatic quantum mechanics takes observables
as the fundamental objects (Jordan et al., 1934; Segal, 1947; Deliyannis,
1969). Observables also arise in the event framework as homomorphisms
from B(R) (the Borel sets of the reals R) into the quantum logic. In either
framework one can define an action of suitable real-valued functions on the
set of observables.

We define a system of observables as a set together with an action of
BF(R) (the real-valued Borel functions on R) on that set. We say a system
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of observables is standard if sums of simultaneously measurable observables
are well defined. [These systems were first defined and studied by Deliyannis
(1969).] With each system of measurements there is associated a system of
observables; we show that the systems of observables that arise in this way
are precisely the standard ones.

Qur main results concern the relationship between systems of measure-
ments and systems of observables. To investigate equivalence of event and
observable frameworks we define a functor Q from the category Z of systems
of measurements to the category 2 of systems of observables. This functor
is not an equivalence but on certain subcategories of 2 becomes one. These
subcategories are characterized as those possessing the “induced map
property”. We give sufficient conditions for the induced map property in
terms of separability and compatibility requirements, and thus can define in
easily verifiable terms two subcategories on which @ is an equivalence. One
of these subcategories contains all systems of measurements derived from
quantum logics, leading to the corollary that a quantum logic is determined
up to isomorphism by its associated system of observables. Finally, we show
that if we modify the category & (by slightly weakening the notion of
homomorphism), then the modified category & is equivalent to 2,

2. Systems of Measurements

Let . be a collection (not necessarily disjoint) of Boolean o-algebras. [By
a Boolean o-algebra we mean a g-complete distributive complemented lattice;
see Halmos (1963) for relevant definitions and background.] We say .# is
consistent if every M € . has the same least element 0, and if, for all M
and M, in A, the operations of My and M, (complements and countable
joins) agree on My N M,. A system of measurements is a pair (X,.#) where
M is a consistent collection of Boolean o-algebras, and X equals the union
of the sets M € 4. If A is a subset of X, we say 4 is compatible if A < M for
some M €.4#.If A is a countable compatible subset of X, then VA denotes
the join of A (as calculated in any M € . containing 4). Forx € X, x'
denotes the complement of x (found in any M € .# containing x). When no
confusion will result we will write X in place of (X, .#).

One example of such a system is (X, {M}), where X' is any set and M is a
collection of subsets of X closed under set complementation and countable
union, i.e., (X, M) is a measurable space. For a second example, we begin by
reviewing some facts about orthomodular posets, Let (L, <) be a partially
ordered set (poset) with least element 0 and greatest element 1. A map
": L - L is an orthocomplementation if ' satisfies (x")" = x, x < y implies
"< x',and x V x" = 1. An orthocomplemented poset (L,< , ") is an ortho-
modular poset if x < y" implies x V y exists, and if x < y implies y = x V(¥ A x").
An orthomodular poset (L, <, ) is a quantum logic if whenever a sequence
{x;} in L satisfies x; < x; for i #7, then Vx; exists in L.

Let (L,f , "} be a quantum logic. A subset 4 € L is a Boolean sub-g-algebra
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of L if (i) for every countable subset £ & 4, VE exists and is in 4; (ii) if

2€ A thena' €4;and (iii) (4,<, ) is a Boolean algebra. The collection of
Boolean sub-o-algebras of L will be denoted. .#(L). It is easily verified that
M(L) is consistent, and so (L,.# (L)) is a system of measurements.

If (X, . #) and (X',.#") are systems of measurements, then a map
h: X~ X' is a homomorphism if for each M € # there exists M' €4 such
that # |, is a o-homomorphism of M into M. (Recall that 2 o-homomorphism
of Boolean o-algebras is a map preserving complements and countable joins.)
We say 4 is an isomorphism if h is bijective and both /2 and 2™ are homo-
morphisms. If L and L, are quantum logics we say #: L; > L, isa
o-homomorphism if (i) #(0) = 0 and A(1) = 1, and (i) if {x;} is a sequence in
Ly such that x; S x;j for i #J, then h(x;) S h(x)' for i #7, and h(Vx;) = VhA(x,).
It is not difficult to show h: Ly = L, is a c-homomorphism iff /: {L,,.#(L,))
- (L,, #(L,)) is a homomorphism (cf. Shultz, 1972, p. 38).

We will now proceed to characterize those systems (X,.#) for which there
exists a quantum logic L such that (X,.#) = (L,.#(L)). The natural candidate
for a partial ordering on X is the relation xS y if x Vy = y in some M € A
containing x and y. This is easily seen to be reflexive and antisymmetric, but
it is not necessarily transitive. We say (X,.#) is transitive if the relation <
defined above is transitive.

For an arbitrary system of measurements (X,.#) we say x, y € X are
orthogonal if x < y'. We say (X,.#) satisfies Property @ if every countable
pairwise orthogonal subset of X is compatible.

The following result appears (in slightly weaker form) in Finch (1969,
Theorems 1.2, 3.1).

Lemma 2.1. (i) If (X,.#) is transitive and satisfies Property @, then
(X,5, ") is a2 quantum logic; (if) If L is a quantum logic, then
(L, #(L)) is transitive and satisfies Property C.

Proof. Assume (X,.4#) is transitive and satisfies Property @. Then (X, <
is a partially ordered set, and the map " satisfies (i) (x)' = x and (i) x S y
implies y’ < x'. The least element of X is 0 and the greatestis 1 =0'.

Now let {x;} be any orthogonal sequence in X. Then by Property 0 there
exists Min .# with {x;} © M. Let x = Vx; (join in M); we claim x is the least
upper bound of {x;} in (X,3). Suppose x; < y € X for all 7; then x; 2
so {y'} U{x;,x,, ...} s a countable orthogonal subset of X. By Property
(O there exists M in A containing {y'} U {x;, x,, . . .} and thus also contain-
ing y = (') . By the consistency of .4, x = Vx; (join in M "); since x; < y for
all 7, then x < y. Thus we have shown that x is the least upper bound of {x;}
in(X,2).

Thus the least upper bound of every orthogonal sequence exists (and
agrees with the join calculated in any M € .# containing that sequence). In
particular, for each x € X the least upper bound of x and x’ is 1, proving
that (X, <, ") is an orthocomplemented poset. Finally, if x < y, then there
exists M in .# containing x and y; therefore, y=xV (' V%) =x V (y Ax")
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as calculated either in M or in (X, <, "). Thus the orthomodular identity
holds in (X, 5, "), completing the proof that (X,%, ) is a quantum logic.

Now let L be any quantum logic. If x S y (where < is the ordering of the
poset L), then x and y are compatible, so the ordering induced from
(L,.#(L)) agrees with the original ordering of L. It follows that (L,.#(L))
is transitive. Let A < L be a countable orthogonal subset and let x = VA.
Thenif 4 =A U {x'}, 4 isa countable orthogonal subset of L and VA = 1.
By a result of Ramsay (1966, Lemma 2) (proven for 4 finite but valid with
the same proof for A countably infinite), 4 is contained in a Boolean sub-o-
algebra of L. Thus 4 is compatible, showing that (L,.#(L)) satisfies
Property@. O

Let (X,.#) be a transitive system of measurements satisfying Property@.
Then L = (X,<, ") is a quantum logic. However, it is not necessarily true
that (X, #) = (L,.#(L)); in fact, there may not exist any quantum logic L
with (X, #) = (L, .#(L)). The problem is that if L is a quantum logic, then,
in general, there will exist collections .# S.# (L) that are rich enough to
determine the order structure of L but not rich enough to determine the
correct compatibility structure. To achieve the result that we are after we
therefore have to specify an additional property. We say (X, .#) satisfies the
finite compatibility property if whenever A is a subset of X such that every
finite subset of A is compatible, then A is compatible. We remark that the
properties of transitivity, Property @, and finite compatibility are independent
(Shultz, 1972, Proposition 4.15). Here we will give an example where the
former two properties hold but the last fails. Let B be a Boolean o-algebra
that is not atomic. Iet .#,(B) be the collection of atomic Boolean sub-o-
algebras of B. Then (B, #,(B)) is transitive and satisfies Property @, but
does not have the finite compatibility property.

We can now state the main result of this section.

Theorem 2.2. Let (X,.#) be a system of measurements. Then there
exists a quantum logic L such that (L,.#(L)) is isomorphic to

(X, M) iff (X,.#) is transitive, satisfies Property @, and has the
finite compatibility property. In this case (X,.#) is isomorphic to
(L, #(L)) where L =(X,5,)

Proof. We first show that the conditions mentioned are necessary. Suppose
L is a quantum logic and (X, .#) = (L,.#(L)). By Lemma 2.1 (L, .#(L))
[and therefore (X,.#)] is transitive and satisfies Property @. Let 4 be a
subset of L such that every finite subset of 4 is compatible. For each finite
subset F of A let [E] denote the smallest Boolean sub-g-algebra of L con-
taining £. Let B = {[F] | E is a finite subset of 4}; we claim B is com-
patible. If x, y are in B, say, x € [F,] andy € [E,], then x and
yarein [E£y U E,], so that every pair of elements in B is compatible. Also,
xV yand x" are in [F, UE,] € B. It follows that B is a Boolean sub-
algebra of L (Varadarajan, 1962, Proposition 3.9) and so B is contained in a
Boolean sub-o-algebra of L (Ramsay, 1966, Lemma 11). Since 4 < B, we
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have shown A is compatible, and thus (X,.#) = (L, # (L)) satisfies the
finite compatibility property.

Conversely, suppose (X, #) is a system that is transitive, satisfies Property
@, and has the finite compatibility property. Let L be the quantum logic
(X, 3, "); we will show (X,.#) is isomorphic to (L, .#(L)).

We will first show that .# < _#(L). Suppose M €.4# ; we must show M is
a Boolean sub-g-algebra of L. By assumption each M € .#is a Boolean
o-algebra. By definition of the map : X - X, if x € M, then x' € M. There
remains to show that countable subsets of M have their least upper bound
inM. Let {x;} be a sequence in M. Define y; = x;, and

yi=x; AV xp)
i<i
for > 1, with meets and joins in M. Then {y;} is an orthogonal sequence in

M, let y = Vy; (join in M). We will show that y is the least upper bound in X
of {x;}. Since

n n
VX =V Y
i i
(oins in M) for all n, then
n
y= \l/xi

for all 7, and thus y 2 x; for all 7 On the other hand, if z € X and z > x; for
all 7, then z > x; > y; all i. As shown in the proof of Lemma 2.1,y = Vy; is
the least upper bound of {y;} in X, so z = y. Thus y is the least upper bound
of {x;} in X, which completes the proof that # < #(L).

Let  be the identity map on X. Since # S.# (L) it follows that
y: (X, M) ~> X =L, #(L))is a homomorphism. We will be finished if we
can show that every B €4 (L) is a Boolean sub-o-algebra of some M € .4
[and so ! is a homomorphism, proving (X,.#) = (L, #(L)})]. We now use the
finite compatibility property of (X,.#). Let E be any finite subset of B,
and let [E] denote the Boolean sub-o-algebra of B generated by F. Since £
is finite, then [F] will also be finite. Let {ay, . . ., 4, } be the atoms (minimal
nonzero elements) of [E]; each e € F can then be expressed as the least
upper bound of some subset of {ay, . . ., @, }. Since ¢; and g; are orthogonal
for i #j, by Property @ there exists M in .4 containing {a,, . . ., a,}. Since,
as shown above, M is a Boolean sub-g-algebra of L, then E € M. Thus every
finite subset £ of B is compatible in (X,.#); by the finite compatibility
property B is compatible, i.e., B is contained in some M € .#. Since B and M
are both Boolean sub-o-algebras of L, then B is 2 Boolean sub-o-algebra of M.
This completes the proof that (X,.#) and (L,.#(L)) are isomorphic. [J

3. Systems of Observables
Let BF(R) be the set of Borel functions from RtoR. By an action of
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BF(R) on a set @ we mean a map {f, ) ~ f-q of BF(R) x @ into Q, satisfy-
ing

[ aq)=(fog)-qforallf,g€BF(R),q€ 0 3.1

ir-q=qforallq € Q, where ixg(A) = A forall A\ ER (32)

A set Q with an action of BF(R) we call a system of observables.

As an example, let L be any quantum logic. An observable of L is a
o-homomorphism from the Borel sets B(R) into L. Let Q(L) be the set of
observables of L and for f€ BF(R), g € Q(L) define f-q € Q(L) by

(f-q)E)=qlf ' (E)] for all E € B(R) (3:3)

Then Q(L) with this action of BF(R) is a system of observables.

We next discuss another example generalizing the one above. Let (X, .#)
be any system of measurements. An observable of (X,.# ) is a homomorphism
from (B(R), {B(R)}) into (X,.#). The set of observables of (X,.#) we denote
by O(X). For f € BF(R) and g € Q(X) we define /- g € Q(X) by (3.3); then
O(X) becomes a system of observables.

Our purpose in this section is to investigate which systems of observables
arise as a system Q(X) associated with a system of measurements. If O and
0, are systems of observables, then ¢: O - @, is a homomorphism if

o(f-q)=1¢(q) for all fE€E BF(R), ¢ €0, (3.4)

and y is an isomorphism if it is bijective in addition. Our goal is to determine
for which systems of observables there exists an isomorphic system of the
form Q(X).

Let Q be any system of observables and suppose {g;,i €/} = Q has the
property that there exists ¢ € Q and {f;, i €'} < BF(R) such that q; = f;-q
for all i € . Then physically we can measure the observables g; simultaneously
by measuring the value of g and then applying the functions {f;}. We can also
measure the “sum” of the observables {g;} by finding (£ f;) - g. However, in
general, this sum may depend upon the particular choice of ¢ and {f;}. We
will say a system of observables is standard if such sums are well defined:

Definition. Let Q be a system of observables. We say Q is standard if

Whenever g, and g, are in Q,{f;,i€ I} and {g;, i €1} arein
BF(R), 1 is at most countable, X f; and Z g; converge everywhere,
andf;-q, =g-qy foralli€l, then(Zf)-q, = g)q9, (B.5)

[The axiom (3.5} is due to Deliyannis {1969).] Before characterizing the
systems Q(X) we need the following technical lemma.

Lemma 3.1. Let Q be a standard system of observables. For each
qEQlet My = {xg q | E € B(R)}, and define V and " on M, by

X @) =Xg_g @ Vg, D =xug; "4 (3.6)
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Then each M, is a Boolean o-algebra, and if.#(Q) = {M, | q € 0},
xQ= U M,
€0
then {X(Q), #(0Q)) is a system of measurements.

Proof. Note first that ' is well defined, since, if x5z ¢, = X7 q5, then
applying xg to both sides and using (3.1) yields Xxg g 91 = Xr —F "q2-
In order to establish that V is well defined, observe first that

Iffi-q,=gi-q, (fori=1,2), then (f1/3) q1 =(£182) 92 3.7

{This follows from (3.1), (3.5), and the identity /1, =5 [(h; + hy)? — ki
~ h,2].} Thus

IfXEi “q1 =X, -q,(i=1,2,...),then Xug; 41 = Xur; 42 (3.8)
[{E:}, (Fiy €B(R), 41,49, € Q]
follows from (3.5), (3.7), and the identity
XE; = Xe, T Xe, XR B, Y Xg, XR ~E,XR —E, ¥~
(with pointwise convergence on the right). It foliows that V is well defined
on M, . It is now easily verified that each M, is a Boolean o-algebra. By (3.5)
with7 =0, x4 g1 = Xp "q, forall g, g, in Q so each M has the same zero.

From this and (3.8) it follows that .#(Q) is consistent and thus {X(Q), #(Q))
is a system of measurements. [J

Theorem 3.2. If ( is a system of observables, then there exists a
system of measurements (X,.#) such that Q is isomorphic to
O(X) iff Q is standard.

Proof. We show first that each system Q(X) is standard. Assume {f;},
&}, 41,9, satisfy the hypotheses of (3.5) with the index set / being non-
empty. Define f: R = R! by f(0\) = {f;(M), /2N, . . .) and g similarly; note
that f and g are Borel functions. Let 7;: R = R be the projection on the ith
component; observe that £~ {r;(£)) = /7}(E) for all E € B(R) and similarly
for g. Thus for each £ € B(R)

(@10 Y[ EN = a1 (7HE))
=(fir q) &)
=" q)E) = (g2° ™) 77 (E)]

Since {n; (E) | i €1, E € B(R)} generate B(RY), it follows that ¢, © f™* and
g,°g71 agree on B(RY).

Now define z: RT — Rby A(Aq, A, . . ) = T N; if the sum converges, zero
otherwise. Then 4 is a Borel function and Ao f=2 f;, hog= Z g;. Thus for
EE€B(R)

(Zfi-q)E)=(g o on™)E)

=(g,°8 o h T YE) = (2 g g, )E)
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which establishes (3.5) for / 5 . If / is empty, we must show 0 -¢;=0-q;,

for all g4, g, in @(X). This follows from g, (#) = ¢,(®) = 0 (the common zero

of the algebras M €.#), and the proof that Q(X) is standard is completed.
Conversely, let Qg be a standard system of observables. Let X be the

system of measurements {X(Q),.#(Q,)} defined in Lemma 3.1; we will

show Q¢ = Q(X). For each g € Q,, define g € Q(X) by ¢(E) = xg - q (for

all £ € B(R)). Note that

D" E)=xg- (9 =xe°f)q
“Xrie) td
=q(r (&)
=(fq)E)

$0 ¢ > § is a homomorphism of Q, onto O(X).

To see that the map g & § is one to one, suppose ¢, = §,, so that
XE 41 = Xg "4, forall £ € B(R). By (3.1) and (3.5), finite linear combina-
tions of characteristic functions will agree on g; and g,. The identity
function i is (pointwise) the sum of a suitable sequence of such functions.
Thus, by (3.5),7x"q{ =ig g, and so by (3.2) ¢; = q,.

We now will show g+ § is sutjective. Suppose 4: B(R) ~ X is any observ-
able of Q(X) with #: B(R) ~ M, being a o-homomorphism for some g € Q.
Since § is a o-homomorphism of B(R) onto M, there will exist f € BF(R) such
that 4 = § o f~! (Varadarajan, 1968, Theorem 1.4), and thus A=7-4=(f-¢)".
This completes the proof that g > ¢ is an isomorphism of 0, onto Q(X). O

4. Equivalence of Event and Observable Framework

To establish the equivalence of the two approaches discussed in Section 2
and 3 (events and observables) one would hope to show that the category &
of systems of measurements and the category 2 of standard systems of
observables are equivalent. Recall that if .27, #are categories and T o/ > F#
is a functor, then T is an equivalence if

for each B € 2 there exists A € &/ with T(4) = B, “.1

for each pair 41,4, in o7, T: hom|[4,,4,] = hom[T(4), T(4,)] &.2)

is bijective.

If X, and X, are systems of measurements and y: X; = X, is a homo-
morphism, then Y induces the homomorphism ¢*: Q(X,) - Q(X,) given by
Y*(q) = ¢ 0 q. If we define Q(¢) = ¢*, then X — Q(X), ¢ = Q(¥) is a functor
from Z to.2. Ideally, the functor O: & — 2 would be an equivalence;
unfortunately, this is not the case. By Theorem 3.2, condition (4.1) holds,
but (4.2) fails, As an example, let B be a non-separable Boolean g-algebra.
(Recall B is separable iff it is countably generated.) Let & (B) be the
collection of separable Boolean sub-o-algebras of B. Since B(R) is separable,
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then the range of every observable ¢: B(R) - B is always separable; there-
fore, Q(B, {B}) = O(B, % (B)), but (B, {B}) and (B, #(B)) are not isomorphic,
so 0 & - 2 is not an equivalence. [Note that if I o/ - 4 is an equivalence,
then by (4.2) T(4 ) = T(4,) implies 4, = 4,.]

More modestly, we can hope that Q: & ¢ > 2o (with Lo E X, 29 2)
will be an equivalence for suitable subcategories & g, 2 large enough to
contain the main cases of interest. If (4.2) holds on Z, then we can choose
2, to be the image of & ¢; thus our main concern is to investigate when
Q: hom[X(, X,] ~hom|[Q(X ), Q(X,)] is bijective. We characterize the
pairs (X, X,) for which this occurs in Theorem 4.1, which depends upon
the following definition.

Definition. Let X and X' be systems of measurements. The pair
(X, X') is said to have the induced map property if whenever

¥ X > X' has the property that y © q is in Q(X ") for every ¢ in
O(X), then ¥ is 2 homomorphism from X to X".

The following observation will be useful in the proof of Theorem 4.1.
If M is any Boolean g-algebra and x € M, then one can easily construct a
o-homomorphism from B(R) onto the subalgebra {0, x, x, 1}. Thus if
(X,.#) is any system of measurements, then every x € X is in the image of a
suitable observable g € Q(X).

Theorem 4.1. Let X and X' be systems of measurements. Then
Q: hom[X, X'] - hom[Q(X), Q(X")] is bijective iff the pair (X, X")
has the induced map property.

Proof. Assume Q: hom[X, X'] = hom[Q(X), O(X")] is bijective. To
verify the induced map property, suppose ¥: X > X ' has the property that
yogeQX' ) for all ¢ € O(X). Then ¢ = ¥ © ¢ is a homomorphism from
O(X) to Q(X"), and so since Q is bijective there will exist ¢ € hom[X, X'
such that Q(¢) equals the map ¢+ ¢ © q,ie., [Q@)(g)=¢oq=yogfor
all ¢ in G(X). Since every element of X is in the range of a suitable observ-
able ¢ € Q(X), it follows that ¥ = ¢ € hom[X, X '], showing that (X, X")
has the induced map property.

Conversely, assume (X, X') has the induced map property. We first show
that Q: hom[X, X'] = hom[Q(X), Q(X")] is one to one. Suppose ¥ and
¥, are in hom [X, X'] and Q(¢/1) = (). Then, for all g € Q(X),

Y1 9q = Yy ©g; as above, it follows that ¥y = /5. (Note this part of the
proof is valid for arbitrary X, X' in &.)

To show Q is surjective, suppose ¢ is in hom[Q(X), Q(X")]. Define
¥: X~ X' by $(a(B)) = [¢@)](E) for all E €B(R) and all g € Q(X).

To see that  is well defined, suppose q1(E) = g,(F) for g4, q, in Q(X),
E,Fin B(R). Then Xg *q1 = Xg "2, 0 Xz "¢(@1) = o(Xg "41) = ¢(XF "q2) =
Xz - 9(q2). Thus ¢(q 1 )(E) = o(q,)(F), showing ¢ is well defined. By con-
struction, foreach g € Q(X) Y ogq=¢(q)€0(X"). By the induced map
property, ¥ € hom|[X, X'7 and Q(¥) = o, so Q is surjective, completing the
proof. [J
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We will now give some partial characterizations of the induced map
property. We will characterize those X € & such that (X, X') has the induced
map property for all X', and the analogous result with the order reversed.

For the former, the key condition is weak separability.

Definition. A system of measurements (X, .#) is weakly separable
if for each M € .# there exists a pair (B, M) withM € B € M,
M, €M and B a separable Boolean sub-g-algebra of M, .

If (X, . #) is a system of measurements, then #(#) will denote the
collection of separable Boolean sub-g-algebras of members of .#. Note
that (X, % (.#)) is weakly separable.

Theorem 4.2. 1f (X,.#) is a system of measurements, then (X, X")
has the induced map property for all X' € & iff X is weakly
separable.

Proof. Assume that X is weakly separable. To verify that (X, X ") has the
induced map property for all X' € &, assume y: X > X' and ¢ ©q € Q(X")
for all g € Q(X). Let M be in 4, by weak separability we can choose (B, M)
withM < B < M, M, €.#, B separable. Since B(R) is the free Boolean
o-algebra on countably many generators (cf. Ramsay, 1966) there exists an
observable ¢ € O(X) with range B. By hypothesis ¢ © ¢ € Q(X"); in particular,
there exists M’ € .#' such that y © g is a o-homomorphism of B(R) into M.
Thus (M) < Y(B) = Y [q(B(R))] < M'. To see that ¥ |, is a c-homomorphism,
suppose {x;} is a sequence in M. Then let {F;} in B(R) be chosen so g(E;) = x;;
we then have

Y(Vx) = Y(@VE)) = V(Y © g)(Ey) = V(x;)

and similarly ¢(x") = ¢(x)', so ¢ is a homomorphism, establishing that
(X, X') has the induced map property.

Conversely, assume (X, X') has the induced map property for all X'. Let
X' be the system of measurements (X, % (#)). Let ¢ be the identity map
on X and let ¢ € O(X,.#). The range of ¢ will be separable, so ¢(B(R)) €. (#);
therefore, Y © g = q is in Q{X, & (4)). By the induced map property ¢ is a
homomorphism from (X,.#) to (X, #(#)). It follows that for each M E M
there exists B € S (#) with M = (M) < B, which shows that (X, .#) is
weakly separable. [

Corollary 4.3. The functor Q is an equivalence from the category of
weakly separable systems of measurements to the category of
standard systems of observables.

Proof. et & wg be the category of weakly separable systems of measure-
ments. By virtue of Theorems 4.1 and 4.2, Q: hom[X, X'] = hom [Q(X),
Q(X")] is bijective for all X, X' in & ws. Now let O, be any system in 2. By
Theorem 3.2 there exists (X, #) € Z with @, = Q(X,.4). But Q(X,.#) =
o, & (M)} and (X, F (M) € X wyg, 50 (4.1) holds and the functor Q is an
equivalence from Z'wgto 2.0
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it follows from Corollary 4.3 that a system X € Z'wg is determined up to
isomorphism by its associated system of observables Q(X). An explicit corres-
pondence is given by the construction in Lemma 4.1. If 0, is any standard
system of observables, then (X(Q,), #(Q,)) is weakly separable and
0o = 0(X(Qo), A (Qy)). Conversely, if X, is weakly separable, then
Xo = (X[O(X)1, A4 [O(Xp)]). [See Shultz (1972, Theorem 3.39) for
proofs of these results, which will not be used in the sequel.]

We next investigate those systems X such that (X', X) has the induced
map property for all X' € & The key property is that of countable com-
patibility.

Definition. A system of measurements X is said to have the count-
able compatibility property if whenever A € X is such that every
countable subset of 4 is compatible, then 4 is compatible.

Lemma 4.4 Let (X, . #) be a system of measurements, and let
% (#) be the collection of subsets 4 of X satisfying

every countable subset of 4 is contained in some M €4, (4.3)

A is closed under complements and countable joins. “4.4)

If each 4 € € (A) is endowed with the Boolean o-algebra structure
inherited from the collection .#, then (X, #(_#)) is a system of
measurements satisfying the countable compatibility property.

Proof. We omit the straightforward verification that (X, #(.#)) is a
system of measurements. Now suppose B < X is such that every countable
subset of B is compatible [i.e., contained in some 4 € €(A)}]. Then, clearly,
by construction of ¥ (#) every countable subset of B is also contained in some
Me A

For each countable subset £ < B let [F'] denote the Boolean sub-g-algebra
generated by £ in any M € .# containing E. (Note that [E] is independent of
the choice of M.) Now define 5 to  be the union of the sets {[£'] [ E'is a
countable subset of B}. We claim B is in €(.#). For if {b;} is a countable
subset of B, then there exist countable subsets E; = Bwith b; € [E;] for
each 7. Thus {b;} < [VE;] and the latter is contained in some M € 4, and
in fact is a Boolean sub-o-algebra of M. Note V; and each b; are also in
[UE;] < B, and thus (4.3) and (4.4) hold, i.e. B CE (M) ThusB is com-
patible in (X € (#)), and we have shown the countable compatibility
property holds for (X, € (#)). O

Theorem 4.5. Let (X,.#) be a system of measurements. Then
(X', X) has the induced map property for all X' € & iff X satisfies
the countable compatibility property.

Proof. Suppose first that (X', X) has the induced map property for all
X' € X. Then, in particular, the pair ([X,% (#)]., (X, #)) has the induced
map property. Let ¥ be the identity map on X, and let ¢ € Q(X,% (#)).
Note that if 4 € €(.#), then all Boolean sub-g-algebras of 4 are in ¥ (#);
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in particular, the range ¢ (B(R)} of ¢ is in ¥ (#). Choose a sequence {x;} in
the range of ¢ which generates the range. By definition of €(#), there
exists M € .# containing the sequence {x;}. Now M N ¢(B(R)) is a Boolean
sub-o-algebra of the range containing all {x;}, so it coincides with the range;
in particular, ¢(B(R)) € M. Thus g = ¢ © q is in Q(X,.#). By the induced
map property ¢ is a homomorphism from (X, % (#)) to (X,.#). Now
suppose D & X has the property that every countable subset of D is com-
patible in (X,.#). Then since .# &% (.#), the same property holds in
(X.2(4)). By Lemma 4.4 it follows that D is contained in some A €% (A).
Now since the identity map ¢ is a homomorphism, then D = (D) € y(4) <
ME M for some M € M. We have thus shown (X,.#) has the countable
compatibility property.

Conversely, assume (X, .#) has the countable compatibility property.
Given (X M )€ Z and y: X'+ X assume ¢ © g € Q(X) for all g € Q(X)).
Given M' €4 we would like to show that there exists M € .# with
Y(M') < M, ie., that Y(M") is compatlble By hypothesis, it suffices to show
every countable subset of Y(M") is compatlble Thus let {y;} be a given
sequence in (M) and choose {x } € M’ such that y(x;) = y; for all i. Now
choose an observable ¢ € Q(X',.#") such that the sequence {x;} is in the
range of g [possible since B(R) is free on countably many generators]. Then
Y © g € Q(X) implies that there exists M € .# such that y [¢(B(R))] < M;in
particular, Y(x;) € M for all i, which shows that Y/(M") is compatible. As in
the proof of Theorem 4.2, Y © ¢ € Q(X) for all ¢ € Q' implies that y preserves
complements and countable joins, so ¢ |3 is a e-homomorphism from M’ to
M, Thus ¢ is a homomorphism, and the proof that (X', X) has the induced
map property is complete. O

Corollary 4.6. ( is an equivalence from the category of systems of
measurements with the countable compatibility property to the
category of standard systems of observables.

Proof. Let & ¢ be the category of systems of measurements with
the countable compatibility property Then, by Theorems 4.1, 4.5,
Q: hom[X, X'] > hom[Q(X), Q(X"] is bl}ectlve forall X, X" in & cc.
Now suppose g € 2 ; then, by Theorem 3.2, there exists (X,.#) € & such
that Q(X,.#) = Q,. By Lemma 4.4, (X,‘g(./ﬂ)) isin ¢, and in the proof
of Theorem 4.5 it was shown that Q(X,.#) = Q(X,% (A)); this completes
the proof that Q: %' ¢ ~ 2 is an equivalence. [J

Corollary 4.7. Quantum logics L; and L, are isomorphic iff the
associated systems of observables Q(L ) and Q(L,) are isomorphic.

Proof. As previously observed, 4: Ly ~ L, is 2 homomorphism iff
h: Ly, M (L)~ (Ly,.#(L;))is a homomorphism. By Theorem 2.2
(L, .# (L)) satisfies the countable compatibility property for every quantum
logic L. Thus by Corollary 4.6, @: hom|[Ly, L,] —~hom{Q(L ), Q(L,)] is
bijective and the statement in Corollary 4.7 follows. [J
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As with Zwg, we can describe explicitly the construction that is the
inverse of the functor Q: 2 cc = 2. If Qg is a standard system of observables
then {X(Q), € [L#(Qp)]) is a system of measurements with the countable
compatibility property, and Qg = Q(X(Q,), € [#(Qo)] ). If X, is any
countably compatible system of measurements, then Xy = (X[0(X,)],
C{M[O(X)]1). [See Shultz (1972, Theorem 3.45) for proofs.]

It is natural to inquire if there is a subcategory &' of & that would
contain Z"wg and & ¢¢ and for which 0: 2  ~ 2 would be an equivalence.
However, this is not the case, as shown by the following example: Let B be
a Boolean o-algebra that is not separable. Let Xy = (B, {B}) and X, = (B,#(B)).
Note that X; € Z o and X, € Z'ws. We claim the induced map property
fails for the pair (Xy, X,). Let ¢ be the identity map on B. Since the range of
every observable ¢ € Q(X,) is separable, then g = ¢ © g € 0(X,). But
y: X = X, is not a homomorphism since Y(B) = B is not contained in any
MeF(B). Thus (X1, X,) does not have the induced map property. Now if
Fws S Foand ZocE g, then Xy and X, arein X gs0Q: Fo> 2
is not an equivalence by Theorem 4.1.

As we have seen, the lack of equivalence of & and 2 is reflected in the
fact that in passing from X to Q(X) information is sometimes lost, For
example, (X, .#), (X, #(A)), and (X, €(.#)) are in general not isomorphic,
yet they have the same associated system of observables. Note that the three
systems differ with regard to compatibility of uncountable sets only; one
could argue that physically such systems cannot be distinguished.

Note thatif Xy, X, € &, then ¢: X; > X, is a homomorphism iff ¢
preserves (i) compatibility and (if) complements and countable joins on
compatible subsets. We propose to weaken (i).

Definition. Let (X,.#)and (X', #") be systems of measurements.
Then : X - X' is a quasihomomorphism if { preserves (i) com-
patibility of countable subsets of X, and (if) complements and count-
able joins on compatible subsets of X,

It is perhaps natural now to define a quasiobservable of (X,.#) as a quasi-
homomorphism from (B(R), {B(R)}) into (X,.#). However, it is not difficult
to verify that this concept is redundant: that quasiobservables and observables
coincide.

Let Z be the category of systems of measurements with quasihomo-
morphisms as morphisms. Define the functor Q: & - 2 as before, i.e., 0
takes X € £ to Q(X) and ¥ € hom[X, X'] to themapg > ¢ °qin
hom[Q(X), Q(X")]. We now show Q: & — 2 is an equivalence.

Theorem 4.8. () is an equivalence from the category of systems of
measurements and quasihomomorphisms to the category of standard
systems of observables.

Proof. By Theorem 3.2, for each 0y € 2 there exists X € Z with
OX)=Qy. The argument in the proof of Theorem 4.1 applies here also to
show Q: hom[X, X'] = hom[Q(X), O(X")] is one to one forall X, X' in Z .
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Following that same proof, suppose ¢ € hom[Q(X), O(X")] and define
¥ X = X' by ¢lg(E)) = [e(@)|(E) for all E € B(R), g € Q(X). For each
compatible sequence {x;} in X choose {E;} in B(R) with g(E;) = x; for all j;
since ¥ © g = ¢(q) € Q(X"), then {Y{q(E;))} = {¥(x;)} are contained in some
MeE 4", thus ¢ preserves compatibility of countable subsets of X. Since
Y(Vx) = (U o @)(VE) = V(Y © g)(E;) = V{(x;), then  preserves countable
joins of compatible sets and similarly  preserves complements. Thus ¢ isa
quasihomomorphism from X to X. Since Q(¢) = ¢, we have completed the
proof that Q is an equivalence. O

In summary, to achieve equivalence of the event and observable frame-
works, we can either restrict the category of event systems (e.g., to Zwg o1
¥ cc), or weaken the notion of homomorphism.
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