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Abstract 

It is shown that in fairly general circumstances the event and observable frameworks for 
axiomatic quantum mechanics are equivalent. 

Introduction 

In the quantum logic approach to axiomatic quantum mechanics (Birkhoff 
and yon Neumann, 1936; Mackey, 1963) the basic mathematical structure is 
the partially ordered set of events, which are usually required to form a 
o-orthomodular poser (Mackey, 1963; Piron, t963; Jauch, t968; Pool, 1968). 
In this framework a set of events is said to be compatible (or simultaneously 
measurable) if it is contained in a Boolean sub-o-algebra of the poset; thus it 
is natural to think of such subalgebras as the mathematical objects corres- 
ponding to measurements. 

In this paper we generalize this context by studying what we call a system 
of measurements: a collection of Boolean a-algebras that overlap in such a 
way that operations (complements, countable joins) are consistently defined 
on the intersections. We characterize those systems of measurements that 
arise from quantum logics (our terminology for cr-orthomodular posets). 
Related results appear in Finch (1969) and Maczynski, (t970). 

An alternative approach to axiomatic quantum mechanics takes observables 
as the fundamental objects (Jordan et al., 1934; Segal, 1947; Deliyannis, 
1969). Observables also arise in the event framework as homomorphisms 
from B(R) (the Borel sets of the reals R) into the quantum logic. In either 
framework one can define an action of suitable real-valued functions on the 
set of observables. 

We define a system of observables as a set together with an action of 
BF(R)  (the real-valued Borel functions on N) on that set. We say a system 
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of observables is standard if sums of simultaneously measurable observables 
are well defined. [These systems were first defined and studied by Dellyannis 
(1969).] With each system of measurements there is associated a system of 
observables; we show that the systems of observables that arise in this way 
are precisely the standard ones. 

Our main results concern the relationship between systems of  measure- 
ments and systems of observables. To investigate equivalence of event and 
observable frameworks we define a functor Q from the category f of systems 
of measurements to the category ~ of systems of observables. This functor 
is not an equivalence but on certain subcategofies of  f becomes one. These 
subcategories are characterized as those possessing the "induced map 
property". We give sufficient conditions for the induced map property in 
terms of separability and compatibility requirements, and thus can define in 
easily verifiable terms two subcategories on which Q is an equivalence. One 
of these subcategories contains all systems of measurements derived from 
quantum logics, leading to the corollary that a quantum logic is determined 
up to isomorphism by its associated system of observables. Finally, we show 
that if we modify the category W (by slightly weakening the notion of 
homomorphism), then the modified category W is equivalent to -~. 

2. Systems o f  Measurements 

Let dr '  be a collection (not necessarily disjoint) of Boolean o-algebras. [By 
a Boolean a-algebra we mean a a-complete distributive complemented lattice; 
see Halmos (1963) for relevant definitions and background.] We say J r '  is 
consistent if every M E J r 'has  the same least element 0, and if, for all M1 
and M 2 in Jg ,  the operations of  M1 and M 2 (complements and countable 
joins) agree on M1 N M 2. A system o f  measurements is a pair (X, J t ' )  where 
J r '  is a consistent collection of Boolean a-algebras, and X equals the union 
of the se t sME ~gt'. IrA is a subset of  X, we sayA is compatible ifA -CMfor 
some M E Jg .  t fA is a countable compatible subset of X, then VA denotes 
the join of A (as calculated in any M E Jr'containing A). For x E X, x '  
denotes the complement of x (found in any M E J containing x). When no 
confusion will result we will write X in place of  (X, Jr ') .  

One example of such a system is (X, {M}), where X is any set and M is a 
collection of subsets of X closed under set complementafion and countable 
union, i.e., (X, M) is a measurable space. For a second example, we begin by 
reviewing some facts about orthomodular posets. Let (L, ~<) be a partially 
ordered set (poser) with least element 0 and greatest element 1. A map 
': L -+ L is an orthocomplementation i f '  satisfies (x') '  = x, x ~< y implies 
y '  ~< x' ,  and x V x '  = 1. An orthocomplemented poset (L,<~, ') is an ortho- 
modular poset if x ~< y '  implies x V y exists, and if x ~ y implies y = x V (y A x'). 
An orthomodular poset (L ,~  < , ') is a quantum logic if whenever a sequence 
{xi} in L satisfies x i ~ X} for i ¢ ] ,  then Vx i exists in L. 

Let (L,<~, ') be a quantum logic. A subset A ---q L is a Boolean sub-a-algebra 
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of L if (i) for every countable subset E ~- A,  VE exists and is in A; (ii) if  
a ~ A  then a '  E A  ; and (iii) (A ,~  < , ') is a Boolean algebra. The collection of 
Boolean sub-a-algebras a l L  will be denoted~C(L).  It is easily verified that 
~ ( (L )  is consistent, and so (L ,J t ' (L) )  is a system of  measurements. 

If  (X, J t )  and ( X ' , J g ' )  are systems of  measurements,  then a map 
h: X ~ X '  is a homomorphism if for each M ~ dr ' there exists M' E J / '  such 
that h[M is a a-homomorphism o f  M into M' .  (Recall that a o-homomorphism 
of  Boolean a-algebras is a map preserving complements and countable joins.) 
We say h is an isomorphism if h is bijective and both  h and h-1 are homo- 
morphisms. I lL1  and L 2 are quantum logics we say h: L 1 ~ L 2 is a 
a-homomorphism if (i) h(0) = 0 and h(1) = 1, and (ii) if (xi} is a sequence in 

t - . ¢ - • 

L 1 such that x i ~ x] for l 4=1, then h(xi) ~< h(x i) for z 4:1, and h(Vxi) = Vh(xi). 
It is not difficult to show h: L1 ~ L2 is a a-homomorphism iff h: (LI,~C(L1)) 
-~ {L2 ,J I (Lz ) )  is a homomorphism (cf. Shultz, 1972, p. 38). 

We will now proceed to characterize those systems (X, J t ' )  for which there 
exists a quantum logic L such that  (X, J t ' )  ~ (L ,~ ' (L ) ) .  The natural candidate 
for a partial ordering on X is the relation x ~  < y if x V y = y in some M E ~ t '  
containing x and y. This is easily seen to be reflexive and antisymmetfic,  but 
it is not  necessarily transitive. We say (X, J g )  is transitive if the relation < 
defined above is transitive. 

For an arbitrary system of  measurements (X,~¢)  we say x, y E X are 
orthogonal if x < y ' .  We say (X, d t ' )  satisfies Property (9 if every countable 
pairwise orthogonal subset of  X is compatible. 

The following result appears (in slightly weaker form) in Finch (1969, 
Theorems 1.2, 3.1). 

Lemma 2.1. (i) I f  (X, d t ' )  is transitive and satisfies Property (9, then 
(X, < , ' )  is a quantum logic; (ii) f f L  is a quantum logic, then 
(L, J [ ( L ) )  is transitive and satisfies Property (9. 

Proof. Assume (X,~¢)  is transitive and satisfies P r o p e r t y , .  Then (X, < )  
is a partially ordered set, and the map ' satisfies (i) (x ' ) '  = x and (ii) x ~< y 
impties y '  ~ x' .  The least element of  X is 0 and the greatest is 1 = 0'. 

Now let (xi} be any orthogonal sequence in X. Then by Property (9 there 
exists M i n  °//[with {xi} c M. Let x = Vxi (join inM);  we claim x is the least 
upper bound of {xi} in ( X , ~ ) .  Suppose xi <~ y C X for all i; then x i < (y')' 
so {y'} U (xl ,  x2 , .  • • } is a countable orthogonal subset of  X. By Property 
(9 there exists M '  in t ¢ containing ~v'} U (x 1, x2, - - • } and thus also contain- 
ing y = (y ' ) ' .  By the consistency of  ~t', x = Vxi (join in M') ;  since xi < y for 
all i, then x < y. Thus we have shown that x is the least upper bound of (xi} 
in (X, < ). 

Thus the least upper bound of every orthogonat sequence exists (and 
agrees with the join calculated in any M E J r '  containing that sequence). In 
particular, for each x E X the least upper bound of x and x '  is 1, proving 
that (X ,~  < , ') is an or thocomplemented poset. Finally, if x < y ,  then there 
exists M i n  J g  containing x andy ;  therefore, y = x V (y '  V x)'  = x V (y A x')  
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as calculated either in M or in (X, < ,  '). Thus the orthomodular identity 
holds in (X, < , '), completing the proof that ( X , < ,  ') is a quantum logic. 

Now let L be any quantum logic. If  x < y (where ~< is the ordering of the 
poset L), then x andy  are compatible, so the ordering induced from 
(L,~,g(L)) agrees with the original ordering of L. It follows that {/;,Jg(L)l 
is transitive. Let A ~ L be a countable orthogonal subset and let x = VA. 
Then if~l = A tO {)¢'}, A is a countable orthogonal subset of  L and VA = 1. 
By a result of  Ram~y  (1966, Lemma 2) (proven f o r k  finite but valid with 
the same proof for A countably infinite),~ is contained in a Boolean sub-o- 
algebra of L. Thus A is compatible, showing that {L,Jg(L)I satisfies 
PropertyO. [] 

Let (X,J{)  be a transitive system of measurements satisfying PropertyO. 
Then L = (X, < ,  ') is a quantum logic. However, it is not necessarily true 
that (X,~g) -~ {L,J{(L)); in fact, there may not exist any quantum logic L 
with ( X , J ( )  -~ {L, ~g(L)l. The problem is that i fL  is a quantum logic, then, 
in general, there will exist collections ~/ - - -~g(L)  that are rich enough to 
determine the order structure of L but not rich enough to determine the 
correct compatibility structure. To achieve the result that we are after we 
therefore have to specify an additional property. We say (X,~g)  satisfies the 
finite compatibility property if whenever A is a subset of X such that every 
finite subset of A is compatible, then A is compatible. We remark that the 
properties of transitivity, Property (_9, and finite compatibility are independent 
(Shultz, 1972, Proposition 4. t 5). Here we will give an example where the 
former two properties hold but the last fails. Let B be a Boolean o-algebra 
that is not atomic. Let ~a(B) be the collection of atomic Boolean sub-o- 
algebras of B. Then (B, ,ga(B)) is transitive and satisfies Property 0, but 
does not have the finite compatibility property. 

We can now state the main result of this section. 

Theorem 2.2. Let (X,J t ' )  be a system of measurements. Then there 
exists a quantum logic L such that {L,~g(L)} is isomorphic to 
(X,~g) iff (X,~t ')  is transitive, satisfies Property 0, and has the 
finite compatibility property. In this case (X, dt ' )  is isomorphic to 
(L,~d'(L)) where L = (X, < , '). 

Proof. We first show that the conditions mentioned are necessary. Suppose 
L is a quantum logic and (X,.A') .~ (L,JI(L)). By Lemma 2.1 (L,J/(L)) 
[and therefore (X, Jt ' ) ]  is transitive and satisfies Property(9. LetA be a 
subset of L such that every finite subset of A is compatible. For each finite 
subset E of A let [E] denote the smallest Boolean sub-o-algebra of  L con- 
taining E. Let B = U ( [E] [ E is a finite subset ofA }; we claim B is com- 
patible. If  x, y are in B, say, x E lEa ] and y E [E2] , then x and 
y are in [EI tO E~], so that every pair of elements in B is compatible. Also, 
x V y  and x '  are in [El tOes] c B. It follows thatB is a Boolean sub- 
algebra of L (Varadarajan, 1962, Proposition 3.9) and so B is contained in a 
Boolean sub-o-algebra of L (Ramsay, 1966, Lemma t l ) .  Since A -~ B, we 
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have shown A is compatible, and thus (X, J t ' )  -~ (L , J I (L ) )  satisfies the 
finite compatibility property. 

Conversely, suppose (X, ~g) is a system that is transitive, satisfies Property 
(9, and has the finite compatibility property. Let L be the quantum logic 
(X, ~<, '); we will show (X, Jg )  is isomorphic to (L, Jg'(L)). 

We will first show that ~ --- ~ ' (L ) .  Suppose M E~/t'; we must show Mis 
a Boolean sub-a-algebra of L. By assumption eachM E Jr ' is  a Boolean 
a-algebra. By definition of the map ': X-~ X, if x @ M, then x' E M. There 
remains to show that countable subsets of M have their least upper bound 
inM. Let {xi} be a sequence inM. Define y l  = x I, and 

yi = xi A ( V x])' 
j < i  

for i > 1, with meets and joins in 3/. Then ~vi} is an orthogonal sequence in 
M; let y = Vy i (join in M). We will show that y is the least upper bound in X 
of {xi}. Since 

n n 

V xi = V Yi 
1 1 

(joins in M) for all n, then 

n 
y>~ V x  i 

1 

for all n, and thus y >i xi for all i. On the other hand, if z E X and z >1 x i for 
all i, then z >~ xi >>'Yz all i. As shown in the proof of Lemma 2.1,y = Vyi is 
the least upper bound of {Yi} in X, so z ~> y. Thus y is the least upper bound 
of {xi} in X ,  which completes the proof that J g  c Jg(L).  

Let $ be tile identity map on X. Since t / - c J / ' ( L )  it follows that 
~: (X,~g) -> {X = L ,~ / (L) )  is a homomorphism. We will be finished if we 
can show that every B E ~ / ( L )  is a Boolean sub-a-algebra of some M E a g  
[and so ~-1 is a homomorphism, proving ( X , ~ ' )  ~ {L, J l (L)) ] .  We now use the 
finite compatibility property of (X ,~ ' ) .  Let E be any finite subset of B, 
and let [E l denote the Boolean sub-a-algebra of B generated by E. Since E 
is finite, then [E] will also be finite. Let {al,.  •., an} be the atoms (minimal 
nonzero elements) of [E]; each e E E can then be expressed as the least 
upper bound of some subset of{al  . . . . .  an}. Since a i and a i are orthogonal 
for i 4:], by Propertyd) there exists M in ~t '  containing {al,.  •., an}. Since, 
as shown above, M is a Boolean sub-a-algebra of L, then E ~ M. Thus every 
finite subset E of B is compatible in (x,  Jg ) ;  by the finite compatibility 
property B is compatible, i.e., B is contained in some M ~ ' .  Since B andM 
are both Boolean sub-a-algebras of L, then B is a Boolean sub-a-algebra of M. 
This completes the proof that (X, Jg )  and (L ,Jg(L) )  are isomorphic. [] 

3. Systems o f  Observables 

l e t  BF(R) be the set of Borel functions from R to R. By an action of 
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BF(R) on a set Q we mean a map (f, q) -+f-q ofBF(N) x Q into Q, satisfy- 
ing 

f .(g. q) = ( fog ) .q  for allf,  g C BF(~), q C Q (3.1) 

i~ "q = q for all q ~ Q, where i~ (X) = 3, for all X E R (3.2) 

A set Q with an action of  BF(~) we call a system of  observables. 
As an example, let L be any quantum logic. An observable of L is a 

~-homomorphism from the Borel sets B(R) into L. Let Q(L) be the set of 
observables of L and for f~BF(R) ,  q C Q(L) define f . q  E Q(L) by 

( f"  q)(E) = q [f-1 (E)] for all E C B(~) (3.3) 

Then Q(L) with this action of BF(~) is a system of observables. 
We next discuss another example generalizing the one above. Let ( X , ~ )  

be any system of measurements. An observable of ( X , ~ ' )  is a homomorphism 
from {B(R), (B(R)})into (X, J t ' ) .  The set of observables of (X, dt ')  we denote 
by Q(X). For fEBF(~)  and q E Q(X) we define f . q  E Q(X) by (3.3); then 
Q(X) becomes a system of observables. 

Our purpose in this section is to investigate which systems of observables 
arise as a system Q(X) associated with a system of measurements. I f  QI and 
Q2 are systems of observables, then ~o: Q1 "+ Q2 is a homomorphism if 

~(f  "q) = f " ~(q) for all f E BF(R ), q E Qa (3.4) 

and ¢ is an isomorphism if it is bijective in addition. Our goal is to determine 
for which systems of observables there exists an isomorphic system of the 
form Q(X). 

Let Q be any system of observables and suppose {qi, i EI}  c__ Q has the 
property that there exists q E Q and {fi, i ~ I} c BF(R) such that qi = fi" q 
for all i E L Then physically we can measure the observables qi simultaneously 
by measuring the value o fq  and then applying the functions ~-}. We can also 
measure the "sum" of the observables {qi} by finding (N fi) "q. However, in 
general, this sum may depend upon the particular choice o fq  and {fi). We 
will say a system of observables is standard if such sums are well defined: 

Definition. Let Q be a system of observables. We say Q is standard if 

Whenever q l and q 2 are in Q, {f/, i c I} and {qi, i C I} are in 
BF(R), I is at most countable, Z f / and  2; gi converge everywhere, 
and f,. "ql =gi "q2 for a l l / C I ,  then (Nfi)"ql  = (Ngi)"q2 (3.5) 

[The axiom (3.5) is due to Deliyannis (t969).] Before characterizing the 
systems Q(X) we need the following technical temma. 

Lemma 3.1. Let Q be a standard system of observables. For each 
q @ Q letMq = {X~ "q [ E C B(R)}, and define V and ' onMq by 

(Xe "q)' = X~-e 'q ;  V (XEi "q) = Xu~i-q (3.6) 
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Then eachMq is a Boolean o-algebra, and i f ~ ' ( Q )  = {Mqi q E O}, 

X(Q) = U Mq 
q ~ Q  

then (X(Q), •(Q)) is a system of measurements. 

Proof Note first that ' is well defined, since, i fxE 'qa = XF "q2, then 
applying X~ to both sides and using 0 . I )  yields XR-E  "qt = XR - F  "q2- 
In order to establish that V is well defined, observe first that 

I f f i  "ql = gi "q2 (for i=  1, 2), then (flf2)"ql = (gigs)"q2 (3.7) 

(This follows from (3.1), 0.5), and the identity hlh 2 = -~ [(h I + h2) 2 - hi  2 
- h 2 2 ] .} Thus 

IfXEi "ql = XF i "q2( i= 1,2 . . . .  ), then XuEi "ql = XuFi "q2 (3.8) 

[{Ei}, {Fi} ~-B(R), ql,q2 C Q] 

follows from (3.5), (3.7), and the identity 

X E i  = )(d£ , + X.E~ X.R - E 1 + )(.E~ X.R - E2 Xa~ - E , + ' ' "  

(with pointwise convergence on the right). It follows that V is well defined 
on Mq. It is now easily verified that  eachMq is a Boolean o-algebra. By (3.5) 
with I = 0, X¢ "q 1 = X~ "q 2 for all q 1, q 2 in Q so each Mq has the same zero. 
From this and (3.8) it follows that ~t ' (Q) is consistent and thus (X(Q), ~/(Q)) 
is a system of measurements. [] 

Theorem 3.2. I f  Q is a system of  observables, then there exists a 
system of  measurements (X,d{) such that Q is isomorphic to 
Q(X) iff Q is standard. 

Proof We show first that each system Q(X) is standard. Assume {f/}, 
(gi}, ql, q2 satisfy the hypotheses of  (3.5) with the index set I being non- 
empty.  Define f: ~ -> R ~r by f(X) = (fl(X), f2(X ) . . . .  } and g similarly; note 
that f and g are Borel functions. Let 7ri: R x -+ ~ be the projection on the ith 
component;  observe that f-1 (Tr/-l(E)} = f t - l (E)  for all E E B(R) and similarly 
for g. Thus for each E E B(N) 

(qa o f - i ) [ z r / - l (E ) ]  = q l  (J~-I(E)) 

: (f;.- qx) (E)  

: 0ri" q 2 ) ( ~ )  = (q2 ° g -~)  [~/-~(~:)11 
qogS2ince-~l-1 (E)[ i a g r e e  onEI'EB(NI) .E B(N)} generate B(NI), it follows that q i o f-1 and 

Now define h: R z ~ N b y  h(Xl, X 2 , . . . )  = N Xi if the sum converges, zero 
otherwise. Then h is a Borel function and h o f = ~ j), h o g = N gi. Thus for 

( ~ f / " q l ) ( E )  : ( q l  o f -1  o h - 1 ) ( E )  

: (q2 ° g-~ ° h - b ( ~ )  = ( ~  g e ' q 2 ) ( E )  
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which establishes (3.5) for I ~ 0- I f t  is empty, we must show 0" q x = 0" q2 
for all ql,  q2 in Q(X). This follows from ql(0) = q2(0) = 0 (the common zero 
of the algebras M E J{) ,  and the proof that Q(X) is standard is completed. 

Conversely, let Qo be a standard system of observables. Let X be the 
system of measurements {X(Q0),J{(Q0)) defined in Lemma 3.1; we wilt 
show Qo -~ Q(x). For each q E Qo define 0 E Q(X) by q(E) = XE "q (for 
all E C B(N)). Note that 

( f  "q) ^(E) = XE "(f "q) = (XE o f ) .q  

=Xy-'(E) "q 
= 0 0~'-1 (f))  

= (y" O)(E) 

so q ~ c~ is a homomorphism of Qo onto Q(X). 
To see that the map q ~ c~ is one to one, suppose ql = c12, so that 

X~ " q I = XE "q: for all E E B(R). By (3.1) and (3.5), finite linear combina- 
tions of characteristic functions will agree on ql and q2. The identity 
function i~ is (pointwise) the sum of a suitable sequence of such functions. 
Thus, by (3.5), i~ "ql = ie'q2 and so by (3.2) ql = q2- 

We now will show q ~ c~ is surjective. Suppose h: B(N) -~ Xis any observ- 
able of Q(X) with h: B(R) -~Mq being a a-homomorphism for some q E Qo. 
Since c~ is a cr-homomorphism of B(N) onto Mq, there will existfEBF(R) such 
that h = ~ of-1  (Varadarajan, 1968, Theorem 1.4), and thus h = f "  c~ = ( f .  q) ~. 
This completes the proof that q ~ c~ is an isomorphism of Q0 onto Q(X). [] 

4. Equivalence of  Event and Observable Framework 

To establish the equivalence of the two approaches discussed in Section 2 
and 3 (events and observables) one would hope to show that the category ~" 
of systems of measurements and the category ~ of standard systems of 
observables are equivalent. Recall that if  d ,  ~ a r e  categories and T: d -->~ 
is a functor, then T is an equivalence if 

for each B C ~ there exists A E d with T(A) ~ B, (4.1) 

for each pair A1, A 2 in ~ ,  T: hom[Ai ,A: ]  -->hom[T(Ax), T(A2)] (4.2) 
is bijective. 

If X1 and X 2 are systems of measurements and ~: X1 -+ X2 is a homo- 
morphism, then ¢ induces the homomorphism ~*: Q(X1) --> Q(X2) given by 
~*(q) = ~ o q. If we define Q(~) = 4*, then X ~  Q(X), ~ w> Q(~) is a functor 
from W t o ~ .  Ideally, the functor Q: W -> ~. would be an equivalence; 
unfortunately, this is not the case. By Theorem 3.2, condition (4.1) holds, 
but (4.2) fails. As an example, let B be a non-separable Boolean a-algebra. 
(Recall B is separable iff it is cotmtably generated.) Let 5P(B) be the 
collection of separable Boolean sub-a-algebras of B. Since B(R) is separable, 
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then the range of every observable q: B(~) -+ B is always separable; there- 
fore, Q(B, {B}) = Q(B,SP(B)}, but (/3, (B}) and (B, 5P(B)J are not isomorphic, 
so Q: 3f -+ ~ is not an equivalence. [Note that if T: d - + ~  is an equivalence, 
then by (4.2) T(A 1) ~ T(A2) impliesA 1 -~A2.] 

More modestly, we can hope that Q: f o ~ o (with f o  c f ,  ~ o C  .~ ) 
will be an equivalence for suitable subcategories f o, ~ o large enough to 
contain the main cases of  interest. If (4.2) holds on K o, then we can choose 
S o to be the image of f o ;  thus our main concern is to investigate when 
Q: horn [X1, X2 ] -~ ham [Q(X1), Q(X2)] is bijective. We characterize tile 
pairs (Xa, X2) for which this occurs in Theorem 4.1, which depends upon 
the fbllowing definition. 

Definition. Let X and X'  be systems of measurements. The pair 
(X, X') is said to have the induced map property if whenever 
4: X-+X'  has the property that 4 o q is in Q(X') for every q in 
Q(X), then 4 is a homomorphism from X to X'. 

The following observation will be useful in the proof of Theorem 4.1. 
I fM is any Boolean a-algebra and x CM, then one can easily construct a 
a-homomorphism from B(N) onto the subalgebra {0, x, x', 1}. Thus if 
( X , J )  is any system of measurements, then every x ~ X is in the image of a 
suitable observable q E Q(X). 

Theorem 4.1. Let X and X' be systems of measurements. Then 
Q: ham IX, X'] -+ ham [Q(X), Q(X')] is bijective iff the pair (X, X') 
has the induced map property. 

Proof. Assume Q: ham[X, X'] -+ hom[Q(X), Q(X')] is bijective. To 
verify the induced map property, suppose 4: X-~ X'  has the property that 
4 o q ~ Q(X') for all q E Q(X). Then q -+ ~ o q is a homomorphism from 
Q(X) to Q(X'), and so since Q is bijective there will exist ~0 C ham [X, X'] 
such that Q(~0) equals the map q ~+ 4 o q, i.e., [Q(~0)] (q) = ~o o q = 4 o q for 
all q in Q(X). Since every element of X is in the range of a suitable observ- 
able q C Q(X), it follows that 4 = ~0 @ ham IX, X'] ,  showing that (X, X') 
has the induced map property. 

Conversely, assume (X, X') has the induced map property. We first show 
that Q: ham[X, X'] -+ ham [Q(X), Q(X')] is one to one. Suppose 41 and 
42 are in ham [X, X'] and Q(4 a) = Q(42)- Then, for all q E Q(X), 
~'1 o q = 42 o q; as above, it follows that 41 = 42- (Note this part of the 
proof is valid for arbitrary X, X'  in f .) 

To show Q is surjective, suppose ~0 is in ham [Q(X), Q(X')]. Define 
4: X -~ X'  by ~ (q(E)) = [~p(q)] (E) for all E E B(N) and all q E Q(X). 
To see that 4 is well defined, suppose ql (E)  = q2(F) for ql, q2 in Q(X), 
E, F in B(R). Then XE" q t = XF" q2, so XE "~P(q 1) = ~P(XE "q 1) = ~°(?(F "q 2) = 
~ "  ~o(q2). Thus ~0(q 1)(E) = ~(q 2)(F), showing 4 is well defined. By con- 
struction, for each q E Q(X), 4 o q = ~p(q) E Q(X'). By the induced map 
property, 4 ~ ham[X, X'] and Q(~k) = % so Q is surjective, completing the 
proof. [] 
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We will now give some partial characterizations of the induced map 
property. We will characterize those X @ f such that (X, X') has the induced 
map property for all X',  and the analogous result with the order reversed. 
For the former, the key condition is weak separability. 

Definition. A system of measurements ( X , J / )  is weakly separable 
if for each M E J / t h e r e  exists a pair (B, M1) with M ~ B _~ M1, 
M 1 E ~//t' and B a separable Boolean sub-o-algebra o fM 1 . 

If (X, J t  r) is a system of measurements, then ~ga(JC) will denote the 
collection of separable Boolean sub-o-algebras of members of J//. Note 
that {X, ~9°(J/')} is weakly separable. 

Theorem 4.2. If (X,.~') is a system of measurements, then (X, X') 
has the induced map property for all X ~ E f i f fX is weakly 
separable. 

Proof. Assume that X is weakly separable. To verify that (X, X') has the 
induced map property for all X'  E f ,  assume 4: X ~ X'  and qJ o q @ Q(X') 
for all q E Q(X). Let M be in ~t'; by weak separability we can choose (B, M1) 
withM --- B c M1, M 1 E J / ,  B separable. Since B(•) is the free Boolean 
o-algebra on countably many generators (cf. Ramsay, 1966) there exists an 
observable q @ Q(X) with range B. By hypothesis ~ o q E Q(X'); in particular, 
there exists M' @ Jr"  such that ~ o q is a a-homomorphism of B(R) into M'. 
Thus ~J(M) __% if(B) = ~b [q(B(R)}] ~ M'. To see that ~b IM is a o-homomorphism, 
suppose {xi) is a sequence in M. Then let {Ei} in B(R) be chosen so q(Ei) = xi; 
we then have 

~(Vx,)  = ~ ( q ( u E i ) )  = v ( ~  o q)(Ei)  = V~(x; )  

and similarly t~(x') = ¢(x)', so ff is a homomorphism, establishing that 
(X, X') has the induced map property. 

Conversely, assume (X, X') has the induced map property for all X'. Let 
X' be the system of measurements {X, 5~(~1t')). Let ~ be the identity map 
on X and let q E Q(X, Jr'). The range of q will be separable, so q(B(R)) E 5p(~/D; 
therefore, ff o q = q is in Q(X, SP(_~g)). By the induced map property ff is a 
homomorphism from (X,~¢) to {X, 5a(~')). It follows that for each M E  ~¢ 
there exists B E 5g(~gt0 withM = if(M) _ B, which shows that (X ,J[ )  is 
weakly separable. [] 

Corollary 4.3. The functor Q is an equivalence from the category of 
weakly separable systems of measurements to the category of 
standard systems of observables. 

Proof. Let f w s  be the category of weakly separable systems of measure- 
ments. By virtue of Theorems 4.1 and 4.2, Q: horn [X, X'] ~ horn [Q(X), 
Q(X')] is bijective for all X, X '  in f w s .  Now let Q0 be any system in 2 .  By 
Theorem 3.2 there exists (X, J D  E 5~9 with Qo -~ Q(X,J[).  But Q(X,J[)  = 
Q{X, 5P(Jt')} and {X, 5g(.~tt)) E 5~ws, so (4.1) holds and the functor Q is an 
equivalence from f w s  to 2 .  [] 
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It follows from Corollary 4.3 that a system X E &rws is determined up to 
isomorphism by its associated system of observables Q(X). An explicit corres- 
pondence is given by the construction in Lemma 4.1. If Qo is any standard 
system of observables, then {X(Qo),Jl(Qo)) is weakly separable and 
Qo ~ Q{X(Qo), ~/¢(Qo)). Conversely, if Xo is weakly separable, then 
Xo ~ {x[a(Xo)] ,Jt[Q(Xo)] ). [See Shultz (1972, Theorem 3.39) for 
proofs of these results, which will not be used in the sequel.] 

We next investigate those systems X such that (X', X) has the induced 
map property for all X'  E f .  The key property is that of countable com- 
patibility. 

Definition. A system of measurements X is said to have the count- 
able compatibility property if whenever A c X is such that every 
countable subset of A is compatible, then A is compatible. 

Lemma 4.4. Let (X,,¢/) be a system of measurements, and let 
c~(j/) be the collection of subsets A of X satisfying 

every countable subset of A is contained in some M E ~t'; (4.3) 

A is closed under complements and countable joins. (4.4) 

If each A C ~(J t ' )  is endowed with the Boolean a-algebra structure 
inherited from the collection ~g¢, then (X, T(J / ) )  is a system of 
measurements satisfying the countable compatibility property. 

Proof. We omit the straightforward verification that {X, ~(~tD) is a 
system of measurements. Now suppose B --- X is such that every countable 
subset of B is compatible [i.e., contained in some A E ~(~/t')]. Then, clearly, 
by construction o f ~ ( d / )  every countable subset of B is also contained in some 
M C dr'. 

For each countable subset E c B let [E] denote the Boolean sub-o-algebra 
generated by E in any M C Jr'containing E. (Note that [El is independent of 
the choice of M.) Now define B to be the union of the sets { [E] 1E is a 
countable subset of B}. We claim/~ is in ~(dt'). For if {hi} is a countable 
subset of/~, then there exist countable subsetsEi ~ B with b i E [Ei] for 
each i. Thus {hi} c [UEi] and the latter is contained in someME~t ' ,  and 
in fact is aBoolean sub-o-algebra of M. Note Vbi and each b~ are also in 
[UEi] c_ B, and thus (4.3) and (4.4) hold, i.e.,/~ E ~ ( J  D. ThusB is com- 
patible in (X,~(~f)),  and we have shown the countable compatibility 
property holds for {X,~(~/D). [] 

Theorem 4.5. Let (X, Jt ' )  be a system of measurements. Then 
(X', X) has the induced map property for all X' C 5~ e i f fX satisfies 
the countable compatibility property. 

Proof. Suppose first that (X', X) has the induced map property for all 
X' ~ X. Then, in particular, the pair ([X,CC(Jt')], (X, Jr')) has the induced 
map property. Let ~ be the identity map on X, and let q ~ Q{X,W(~')). 
Note that ifA ~ W(dg), then all Boolean sub-o-algebras of A are in T(~ ' ) ;  
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in particular, the range q (B(N)) of q is in c~(d¢). Choose a sequence (xi} in 
the range of q which generates the range. By definition of cC(Jg), there 
exists M E ~ containing the sequence {xi}. Now M N q {B(R)) is a Boolean 
sub-o-algebra of the range containing all {xi} , so it coincides with the range; 
in particular, q {B(N)) ___ M. Thus q = t~ o q is in Q(X,Jt ) .  By the induced 
map property ~ is a homomorphism from {X, CC(~g)) to (X, dD.  Now 
suppose D ~ X has the property that every countable subset of D is com- 
patible in (X,~//). Then since J r ' -  c ~ (Jr'), the same property holds in 
{X, fC(Jt')). By Lemma 4.4 it follows thatD is contained in someA E~(Jg) .  
Now since the identity map ~ is a homomorphism, then D = ~(D) _c ¢(A) _ 
M E  Jr '  for some M @J/ .  We have thus shown (X, Jr') has the countable 
compatibility property. 

Conversely, assume (X, ~g) has the countable compatibility property. 
Given (X', Jr") E Y" and ~: X' -~ X assume ~ o q E Q(X) for all q E Q(X'). 
Given M' C~t  't we would like to show that there exists M @ ~ with 

t C " ~ . . . .  ~0(M ) _ M, Le., that ~(M ) is compatible. By hypothesis, it suffices to show 
every countable subset of ~(M') is compatible. Thus let (Yi} be a given 

( Z  t 
sequence in ~(M') and choose {xi} _ M such that ~(xi) = Yi for all t. Now 
choose an observable q E Q(X' , J / ' )  such that the sequence {xi} is in the 
range ofq  [possible since B(N) is free on countably many generators]. Then 
t~ o q E Q(X) implies that there exists M E  Jr'such that ¢ [q{B(R))] _c M; in 
particular, ~(xi) E M for all i, which shows that ff(M') is compatible. As in 
the proof of Theorem 4.2, ¢ o q E Q(X) for all q E Q' implies that ¢ preserves 
complements and countable joins, so ff IM' is a o-homomorphism fromM' to 
M. Thus ff is a homomorphism, and the proof that (X', X) has the induced 
map property is complete. [] 

Corollary 4. 6. Q is an equivalence from the category of systems of 
measurements with the countable compatibility property to the 
category of standard systems of observables. 

Proof. Let ~ c c  be the category of systems of measurements with 
the cotmtable compatibility property. Then, by Theorems 4.1, 4.5, 
Q: horn [X, X'] -~ hom[Q(X), Q(X')] is bijective for all X, X'  in 5fcc .  
Now suppose Qo E ~  ; then, by Theorem 3.2, there exists (X,,/t") E ~e such 
that Q(X,~g) ~ Qo. By Lemma 4.4, (X,~ (,g)) is in 5tfcc , and in the proof 
of Theorem 4.5 it was shown that Q(X,~g) = Q{X, qf(Jt')); this completes 
the proof that Q: f c c  ~ -~ is an equivalence. [] 

Corollary 4. Z Quantum logics L1 and L2 are isomorphic iff the 
associated systems of observables Q(L 1) and Q(L2) are isomorphic. 

Proof. As previously observed, h: L 1 -+ L 2 is a homomorphism iff 
h: (L 1,~/(Z 1)) -+ (L2,Jg(L2)) is a homomorphism. By Theorem 2.2 
(L ,~(L) )  satisfies the countable compatibility property for every quantum 
logic L. Thus by Corollary 4.6, Q: hom[LbL2] -+ hom[Q(L1), Q(L2) ] is 
bijective and the statement in Corollary 4.7 foUows. [] 
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As with f w s ,  we can describe explicitly the construction that is the 
inverse of the functor Q: f c c  ->~- If Qo is a standard system of observables 
then {X(Qo) , W [Jt'(Qo) ] } is a system of measurements with the countable 
compatibility property, and Q o ~- Q{X(Qo), ~ [~g(Q0)] )- If X o is any 
countably compatible system of measurements, then X o _~ (X[Q(Xo)], 
W{J/[Q(Xo)] }). [See Shultz (1972, Theorem 3.45) for proofs.] 

It is natural to inquire if there is a subcategory f o  of f that would 
contain °d:ws and f c c  and for which Q: f o -+ ~ would be an equivalence. 
However, this is not the case, as shown by the following example: Let B be 
a Boolean o-algebra that is not separable. Let X1 = (B, {B}) and X 2 = (B,~(B)). 
Note that X 1 ~ f cc  and X 2 E f w s .  We claim the induced map property 
fails for the pair (XI, X2). Let ~ be the identity map on B. Since the range of 
every observable q @ Q(X1) is separable, then q = ~ o q E Q(X2). But 
~: X 1 ~ X  2 is not a homomorphism since ~(B) =B is not contained in any 
ME~(B) .  Thus (X~, X2) does not have the induced map property. Now if 
f w s  - Xo  and ~?cc ~- f o ,  then X1 and X 2 are in f o  so Q: Y'o -* ~ 
is not an equivalence by Theorem 4.1. 

As we have seen, the lack of equivalence of f .  and ~ is reflected in the 
fact that in passing from X to Q(X) information is sometimes lost. For 
example, (X,~g), {X,5:(~/)), and {X, c~(j/)) are in general not isomorphic, 
yet they have the same associated system of observables. Note that the three 
systems differ with regard to compatibility of uncountable sets only; one 
could argue that physically such systems cannot be distinguished. 

Note that if X1, X 2 ~ f ,  then ~: X1 -+X2 is a homomorphism iff ~b 
preserves (i) compatibility and (ii) complements and countable joins on 
compatible subsets. We propose to weaken (i). 

Definition. Let (X, dd) and (X',~E') be systems of measurements. 
Then ~: X-> X'  is a quasihomomorphfsm if ~ preserves (i) com- 
patibility of countable subsets of X, and (ii) complements and count- 
able joins on compatible subsets of  X. 

It is perhaps natural now to define a quasiobservabte of (X,Jd)  as a quasi- 
homomorphism from (B(R), {B(R)}) into (X,~ ' ) .  However, it is not difficult 
to verify that this concept is redundant: that quasiobservables and observables 
coincide. 

Let ~ be the category of systems of measurements with quasihomo- 
morphisms as morphisms. Define the functor Q: ~ ~ .~ as before, i.e., Q 
takes X G ~ to Q(X) and ~ E horn IX, X'] to the map q -> ~ o q in 
hom[Q(X), Q(X')]. We now show Q: f ~ ~ is an equivalence. 

Theorem 4.8. Q is an equivalence from the category of systems of 
measurements and quasihomomorphisms to the category of standard 
systems of observables. 

Proof. By Theorem 3.2, for each Qo E ~ there exists X E 5~7 with 
Q(X) ---- Qo. The argument in the proof of Theorem 4.1 applies here also to 
show Q: horn[X, X'] ~ hom[Q(X), Q(X')] is one to one for allX, X'  in ~7. 
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Following that  same proof, suppose ~0 ~ hom[Q(X),  Q(X')]  and define 
~: X ~ X '  by ~{q(E)) = [~(q)] (E)  for all E E B(N), q E Q(X). For  each 
compatible sequence (xi} in X choose {Ei} in B(N) with q(.Ei) = xi for all i; 

• © h . • 

since ~ q = ~(q) ~ Q(X ), then {~{q(Ei)}} = {~(xi)} are contained in some 
M ~ J ' ;  thus ~ preserves compatibi l i ty  of  countable subsets of  X. Since 
~(Vxi ) = (~  o q)(VEi) = V(~ o q)(Ei) -- V~(xi) ,  then ~ preserves countable 
joins of  compatible sets and similarly ~ preserves complements.  Thus ~ is a 
quasihomomorphism from X to X ' .  Since Q(~)  = ~, we have completed the 
proof  that  Q is an equivalence. [] 

In summary,  to achieve equivalence of  the event and observable frame- 
works, we can either restrict the category of  event systems (e.g., to ~ w s  or 
2~fcc), or weaken the notion o f  homomorphism.  
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